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We present a discussion of some numerical algorithms for the solution of the
Vlasov–Maxwell system of equations in the magnetized, nonrelativistic case. We
show that a splitting scheme combined with a Van Leer type of discretization provides
an efficient and accurate scheme for integrating the motion of charged particles in their
self-consistent electromagnetic field. The problem of open boundary conditions is
also considered. We then discuss the parallelization strategy as used on large parallel
computers. Finally, we present an example of the evolution of an electromagnetic
beam plasma instability as a typical problem of interest in plasma physics research
which can be studied with the Vlasov code. c© 2002 Elsevier Science (USA)

1. INTRODUCTION

Space and laboratory plasmas can be considered collisionless in many situations and
their dynamics, driven in part by kinetic effects, i.e., more or less transient deviations
from thermodynamical equilibrium, can be described by the Vlasov–Maxwell (or Vlasov–
Poisson) equations. The Vlasov equation plays a central role in classical and semiclassical
time-dependent mean field theory and has been used to model a wide range of many-body
processes from plasma physics (see, for example, Akhiezer et al. [1]) to the gravitational
N -body problem (see, for example, Peebles [2]) and nuclear dynamics (see, for example,
Bertsch and Das Gupta [3]). In plasma physics, the physical content of these equations is
conceptually simple: Coulomb interactions between the charged particles are replaced by
a common mean electromagnetic field determined by the Maxwell or Poisson equations,
with electric charge and current densities determined by the particle distribution functions.
However, for any realistic (even simplified) problem, this system of equations cannot be
dealt with analytically, especially in the full nonlinear regime, and large-scale numerical
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simulations are presently the most important resource for investigating the dynamics of
such systems.

The particle-in-cell (PIC) approach (see, for example, Birdsall and Langdon [4]) has
been the favorite tool essentially because it allows the modeling of large-scale phenomena
in one, two, and even three dimensions while solving the Vlasov equation, which is a partial
differential equation for a distribution function depending on six coordinates (besides the
time) and requires in general numerical resources which are far beyond the present day
possibilities. However, a number of interesting problems can be studied in a phase space
of lower dimensionality as, for example, two spatial and two or three velocity coordinates,
which brings their numerical resolution via the Vlasov equation within the possibilities of
existing computers.

The interest of such an approach resides mainly in the fact that one is not bothered by
the statistical noise which is intrinsic to PIC simulation, so it is possible to study with high
accuracy problems where small-scale structures in phase space play an important role, such
as in the formation of electron or ion holes. The knowledge of the particle distribution
function and its evolution with a good space and time resolution is then essential to the
understanding of the physical phenomena under study.

However, the free-streaming evolution described by the advective term in the Vlasov
equation usually leads to the formation of increasingly smaller and smaller scales in velocity
space, resulting in a numerically unstable behavior when these scales become comparable
to the velocity resolution. This is the “filamentation problem,” which has been one of
the reasons why Vlasov simulations have been poorly considered compared to particle
simulations, which are insensitive to these small scales in velocity space. Several ways of
dealing with this problem have been devised (see, for example, Klimas and Farrell [5]) and
we shall discuss this problem in what follows (see the last section).

In this paper we describe a numerical algorithm for the solution of the Vlasov equation in
the phase space self-consistenly coupled to the Maxwell equations. This algorithm is based
on the so-called “splitting scheme” widely used in numerical fluid dynamics; this scheme
was first applied by Cheng and Knorr [6] to the solution of the Vlasov–Poisson in the
electrostatic limits and later used by several authors. We give here an extension to the fully
magnetized case. In this algorithm the advection equation plays a key role and its solution
is used repeatedly; therefore it is crucial to implement a performing and accurate scheme to
solve this equation. A significant part of this paper is devoted to the description of a general
framework where the different methods which have been used so far and their possible gen-
eralizations can be analyzed; we present a detailed numerical comparison between the most
frequently used methods. We discuss also the problem of open boundary conditions which,
to the authors knowledge, has been treated by ad hoc methods. We propose a specific scheme
which we found to perform successfully in our simulations. We discuss in Appendix II the
corresponding open boundary conditions for the Poisson equation in the electrostatic limit
and for the Maxwell equations in the full electromagnetic regime. We also discuss the im-
plementation of this algorithm on large parallel computers and finally an example of the
use of this code is presented in the case of a problem of interest in plasma physics research.

The paper is organized as follows. In Section 2 we introduce the equations and the
charactristic parameters. In Section 3 we discuss the numerical algorithm for the integration
of the Vlasov equation and in Section 4 we present a scheme for implementing open
boundary conditions on the Vlasov equation. A comparison between the most used algorithm
for the solution of the Vlasov equation is discussed in Section 5. We then discuss the parallel
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implementation of the algorithm in Section 6 and we present in Section 7 an example of
the use of the code in the five-dimensional case (2d in space and 3d in velocity). Finally,
we discuss in Section 8 some issues like coarse-grained evolution and the related problem
of phase space filamentation and we present our conclusions.

2. THE EQUATIONS

The behavior of a multispecies collisionless magnetized plasma is described by the
Vlasov–Maxwell system of equations, which, in physical units, reads

∂ f�

∂t
+ v · ∂ f�

∂x
+ Z�e

m�
(E + v × B) · ∂ f�

∂v
= 0, (1)

∂B
∂t

= −∇ × E, �0�0
∂E
∂t

= ∇ × B − �0 j, (2)

∇ · E = q

�0
, ∇ · B = 0. (3)

Here f�(x, v, t) is the distribution function of the particles of species �, m� and Z�e are
the corresponding mass and electric charge, and E(x, t) and B(x, t) are the electric and
magnetic fields determined by external and internal charge and current densities given by

q = e
∑

�

Z�

∫
f� dv; j = e

∑
�

Z�

∫
v f� dv.

The physical phenomena which are described by the Vlasov–Maxwell equations (1)–(3)
cover an enormous range of spatial and temporal scales, so that various dimensionless forms
and approximations are used according to the specific problem one has to deal with. These
equations have five dimensionless parameters (see, for example, Gott and Yurchenko [7])
which can be introduced as follows.

By defining T̄ as a characteristic time scale, m̄ as a characteristic mass, Ē and B̄ as a
characteristic electric and magnetic field, Ū = Ē/B̄ as the associated characteristic (drift)
velocity, and v̄� as the characteristic thermal speeds, the Vlasov–Maxwell equations can be
expressed in dimensionless form as (see the appendix for the details)

∂ f�

∂t
+ ��v · ∂ f�

∂x
+ Z���(E + ��v × B) · ∂ f�

∂v
= 0, (4)

∂B
∂t

= −∇ × E,
∂E
∂t

= RE (∇ × B − j), (5)

∇ · E = RE q, ∇ · B = 0, (6)

where �� = v̄�/Ū , �� = (eĒ/m̄)/(v̄� T̄ ), and RE = (c/Ū )2.

We note that the field equations contain only one dimensionless parameter, RE ; the
limit RE → ∞ corresponds to the Darwin approximation, where the displacement current
is neglected. The Vlasov equation for each particle species contains two dimensionless
parameters: �� , which characterizes the width of the distribution function f� in velocity
space, and �� , which characterizes (with ��) the intensity of the Lorentz force acting on
the particles. The corresponding (normalized) moments, the density n� , the bulk velocity
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u� , the kinetic energy density K� , and the kinetic energy flux Φ� , for each component, are
given by

n� =
∫

f� dv, n�u� = ��

∫
v f� dv, K� = ��

��

∫
v2

2
f� dv, Φ� = �2

�

��

∫
v2

2
v f� dv.

(7)

3. THE ALGORITHM

Two main steps have to be considered for the numerical solution of the Vlasov equation:
the first one relates to the time discretization and the second one to the space and velocity
discretizations. We start by laying out the general framework which will be used in this
paper; in order to simplify the notations, we assume in this section that there is only one
particle species, with parameters �� = 1, Z� = −1, and �� = 1.

The Vlasov equation is basically a multidimensional advection equation: even in the
simplest case of a one-dimensional plasma interacting with an electrostatic field, the distri-
bution function still depends on two independent variables (x , v). An important property of
this advection equation is that its characteristics, the particle trajectories,

dx
dt

= v,
dv
dt

= −(E + v × B), (8)

describe a Hamiltonian flow T t in phase space, usually in noncanonical variables,

z0 → z(z0, t) ≡ T t z0,

using the notation z = (x, v) to represent a point in phase space. The flow is reversible,

z0 = T −t z, T −t · T t = identity,

and preserves the volume element in phase space,

dz = dz0,

a property characterizing symplectic transformations.
In terms of this flow, the solution of the Vlasov equation can be written formally as

f (z, t) = f0(T −t z), (9)

with f0 being the distribution function at time t = 0. This relation defines an evolution
operator T t acting on sufficiently smooth functions of z,

f (z, t) = T t f0(z) = f0(T −t z).

Assume for a moment that the flow T t (or T t ) is known; the problem is then to obtain
a discrete formulation by using the fact that the space and velocity discretizations involve
the projection of f onto some finite dimensional function space W . This is easily done if
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one knows a complete basis ��(z) spanning W as well as a basis �� of its dual (the set of
all linear functionals acting on the elements of W ), such that

��(�	) = 
�,	. (10)

Then f is approximated by a function f̃ which belongs to W and can be characterized by
its components

a� = ��( f̃ )

in the basis �� ,

f̃ (z) =
∑

�

a���(z).

Knowing the coefficients {a�(0)} of the initial distribution function and using Eq. (9), f̃
may be advanced in time,

f (z, t) =
∑

�

a�(0)��(T −t z),

so that

a�(t) =
∑

	

��(� 	(T −t z))a	(0) =
∑

	

A�
	a	, (11)

where the matrix elements A�
	 of the projection T̃ t of the evolution operator T t on the

approximation space W are given by

A�
	 = ��(�	(T −t z)). (12)

The approximated evolution operator is in general no longer reversible, with

T̃ −t · T̃ t �= identity

expressing the fact that the Hamiltonian character of the phase space flow has been lost and
that the resulting scheme is dissipative.

However, the flow T t is usually not known explicitly. One has therefore to restrict oneself
to time steps �t sufficiently small so that Eq. (8) can be solved approximatively to some
order �tr . If r is small (r ≤ 2) this can be done analytically; this is the method used by
Cheng [11], Fijalkow [12], and Gazdag [13] to treat the advance in a constant magnetic
field. For higher order, or more complicated, motions one can use an iterative solution (see,
for example, Bermejo [14] or Sonnendrücker et al. [15]).

3.1. The Splitting Scheme

To obtain an approximation of the flow T and of the associated evolution operator T , we
have chosen here another method, which is to use the splitting scheme (see, for example,
Blanes and Moan [16]), as was first done by Cheng and Knorr [6] in the electrostatic case
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where the space and velocity advection terms are advanced separately. The main reason
for this choice can be understood if one puts this splitting method in the perspective of
“symplectic” integrations. Consider, for example, the electrostatic case where the particle
motion is described by the dimensionless Hamiltonian

H = v2

2
+ Φ(x),

with a potential Φ(x) depending only on the position; then the Vlasov equation can be cast
in the form

∂ f

∂t
= −[H, f ] ≡ � f

using the Poisson brakets [H, f ] = {(∂ H/∂x)(∂ f/∂v) − (∂ H/∂v)(∂ f/∂x)}, and the evolu-
tion operator T t becomes

T t = e�t .

The Hamiltonian can be split into two parts, H = H1 + H2, with H1 = v2/2 and H2 =
−Φ(x), which have the properties that the corresponding operators exp(�1� ) and exp(�2� ),
with �i f = −[Hi , f ], are explicitly known as translations in x or v,

exp(�1� ) f (x, v) = f (x − v�, v), exp(�2� ) f (x, v) = f (x, v − E(x)� ), (13)

where E = −∂Φ/∂x is the electric field. It can be shown that

e�t = lim
N→∞

[
exp

(
�2t

2N

)
exp

(
�1t

N

)
exp

(
�2t

2N

)]N

.

For a finite time step � t = t/N one gets the second-order approximation:

e�� = exp

(
�2�

2

)
exp(�1� )exp

(
�2�

2

)
+ O(� 3). (14)

These formulae are valid for any decomposition of the Hamiltonian but if the two operators
�1 and �2 commute, Eq. (14) is exact and reduces to e�� = exp([�1 + �2]� ). Higher order
approximations can be found in [16].

Equation (14) corresponds to an approximation of the phase space flow T t given by

x� = T � x = x + �v + � 2

2
E

(
x + v

�

2

)
, v� = T �v = v + � E

(
x + v

�

2

)
, (15)

which is the Verlet algorithm for a second-order particle advance (cf. Andersen [8]). A
very important property of the map generated by Eq. (15) is the conservation of the volume
element in phase space,

dx� dv� = dx dv,

a property characterizing symplectic transformations. This property ensures that the error
of the map is bounded, i.e., there will be no secular growth in the energy conservation error.
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One may even show (see Yoshida [9]) that the map (15) describes the motion of a particle
with an approximate Hamiltonian,

H̃ (x, v, � ) = H + �v

2
E + � 2

12

(
E2 + v2 ∂ E

∂x

)
,

and that H̃ is exactly conserved.
The same arguments may also be applied when the phase space variables are not canonical,

for exemple in the presence of a magnetic field. Consider first the simplest case of a spatially
uniform plasma imbedded in a uniform magnetic field of unit magnitude and directed along
the z-axis. The corresponding Vlasov equation reduces to

∂ f

∂t
= −

[
vy

∂

∂vx
− vx

∂

∂vy

]
f, (16)

whose solution to order 0(� 2) can be expressed in terms of the operators 	x = −vy∂/∂vx

and 	y = vx∂/∂vy generating translations along the vx and vy axis,

f (vx , vy, � ) = 
z(� ) f (vx , vy, 0), (17)

with


z(� ) = exp

(
	x �

2

)
exp(	y� )exp

(
	x �

2

)
+ O(� 3).

The corresponding map

vx� = vx (1 − � 2/2) + vy�, vy� = vy(1 − � 2/2) − vx � (18)

can be shown to be symplectic, since it is a product of symplectic operators; furthermore
it conserves exactly the quantity (v2

x� + v2
y� )/(1 + � 4/4), indicating that the motion is very

close to a circular one.
We have studied numerically the properties of this scheme by integrating numerically

Eq. (16) with equal resolution, Nvx = Nvy = Nv, in both velocity coordinates. We start
with an initial distribution function which is a Maxwellian with a bulk velocity directed
along the x-axis and we follow its evolution in time, as described by Eq. (17), forgetting
both the spatial dependance and the z velocity. In this case, the distribution function, which
is the exact solution of Eq. (16), preserves its shape with its maximum rotating around the
magnetic field axis, with constant angular velocity 
 = 1. the numerical solution shows the
same rotation, but with a slightly different frequency 
num = 1 + 

, with 

 depending
on the numerical resolution in velocity space. We found after roughly 103 iterations that


 � 10−2 for Nv = 41 points in each velocity direction, scaling as 

 ∼ N−1.8

v . When the
velocity resolution is sufficient (Nv ≥ 20) the total energy decreases at a rate which scales
as 
E ∼ N−3

v . Thus the scheme (17) discussed above performs satisfactorily and it has been
used by Johnson [10], with minor modifications. In the case of a constant magnetic field
it is essentially equivalent to the integration of Eq. (16) along characteristics such as (18),
used, for example, by Cheng [11] and Fijalkow [12].

In a more general case, with a nonvanishing electric field E and a magnetic field B which
has an arbitrary direction with respect to the reference frame, a symplectic advance of the
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velocities exact to second order in time requires the product of seven translation operators
in velocity space. Indeed, let us define

	x = Fx
∂

∂vx
, 	y = Fy

∂

∂vy
, 	z = Fz

∂

∂vz
(19)

and by analogy with Eq. (17)


z(� ) = exp(	x �/2) exp(	y� ) exp(	x �/2), (20)

where Fx , Fy , and Fz are now the components of the Lorentz force, F = Z���(E +
��v × B). Then it can be shown that

f (vx , vy, vz, � ) =
[

z

(
�

2

)
exp(	z� )
z

(
�

2

)]
f (vx , vy, vz, 0) (21)

is a solution, correct to second order in time of the equation

∂ f

∂t
= −

[
F · ∂

∂v

]
f.

In Eq. (21) we have in some sense priviliged the vz-axis. This choice is arbitrary and one
can select any other axis, obtaining the same results at least to second order in the time step.

In the general electromagnetic 5d case with two space variables (x , y), three velocity
variables (vx , vy, vz), and space- and time-varying electromagnetic fields E and B, the
scheme we used for the time advance over a time interval � = �t is a combination of spatial
and velocity translations which are summarized by the equation

f (x, y, vx , vy, vz, � ) = exp

(
�xy�

2

)
exp

[

z

(
�

2

)
exp(	z� )
z

(
�

2

)]

× exp

(
�xy�

2

)
f (x, y, vx , vy, vz, 0), (22)

where 	z , 
z are as defined in Eqs. (19) and (20) and

�xy = −
(

vx
∂

∂x
+ vy

∂

∂y

)

is the infinitesimal generator of translations in the physical space.
Equation (22) must be coupled to the field equations, (2) and (3), which are solved once

per time step. To maintain second-order accuracy in �t , the electric and magnetic fields
which are used to calculate the force F in the velocity advance (21) are determined self
consistently by solving the Maxwell equations using currents and charges calculated with
the translated distribution function exp(�xy�/2) f , i.e., just after the first half-time step.

To the authors knowledge, this advancing scheme for the fully electromagnetic case is
original; in principle it could be easily extended to the full 6d case. However, even working
with the most powerful supercomputers of the last generation, the 6d case still requires too
large a memory requirement.
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3.2. Solution of the One-Dimensionnal Advection Equation

The advancement of the distribution function summarized by Eq. (22) is obtained through
a combination of “elementary” translations which differ only on the variable which is
concerned. We now describe how such a translation may be efficiently discretized and for
the sake of simplicity we only consider the case of the space translation operator and ignore
the fact that f is actually a function of the velocity v. We are then left with the protype
advection equation for a distribution function f (x , t) depending only on space and time,

∂ f

∂t
+ v

∂ f

∂x
= 0, (23)

where v is a constant velocity, considered as a parameter. What follows applies equally well
to the velocity translation operators.

The corresponding evolution operator reduces to a translation:

T t f (x) = e�t f (x) = f (x − vt), � = −v
∂

∂x
.

A considerable amount of work has been devoted to the problem of obtaining accurate
numerical solutions of equations similar to Eq. (23) (see, for example, Godlewski and
Raviart [17]). We shall limit ourselves here only to what is relevant for our purpose, which
is to provide a common framework within which we may compare the different methods
most commonly used in the numerical solution of the Vlasov–Maxwell or Vlasov–Poisson
equations and evaluate their relative performances.

As mentionned above, the discretization process implies usually a projection on some
finite-dimensional space of functions. We shall limit ourselves to spaces of piecewise poly-
nomial functions, the properties of which depend on the degree of regularity which is
required from the approximating functions. Three particular cases are considered here: first
the spaces used in the “discontinuous Galerkin” methods when no regularity is required at
the cell boundaries, then the “smooth Hermite” spaces when the continuity of the function
and its m first derivatives is imposed at the cell boundaries, and finally the “spline” spaces
when still more smoothness is required.

Let us now introduce some notations. The numerical domain [0, L] is divided into N
cells Ci , 1 ≤ i ≤ N , of equal (for the sake of simplicity) width �x = L/N centered on the
N grid point x̄ i = (i − 1/2)�x and with boundaries xi = i�x , 0 ≤ i ≤ N . We denote by
fi the value f (xi ) of the function f at the cell boundaries, by f̄ i the “cell average,”

f̄ i = 1

�x

∫ xi

xi−1

dx f (x) = 1

2

∫ +1

−1
f

(
x̄i + �x

2
�

)
d�, (24)

and by Hi (x) the characteristic function of the cell Ci , where Hi (x) = 1 if x belongs to the
cell Ci and Hi (x) = 0 otherwise. In this section, we limit ourselves to functions f (x) which
are periodic, with the open, nonperiodic case being considered in the next section.

3.3. Discretization of the Displacement Operator

3.3.1. Discontinuous Galerkin methods. The “discontinuous Galerkin” methods (see
Victory and Ganguly [18], and more recently Cockburn [19]) uses the (M + 1) ∗ N di-
mensional space VN ,M of functions which reduce, on each cell Ci , to polynomials of de-
gree equal to or less than M . A convenient basis of VN ,M is provided by the functions
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�i,l(x) = Hi (x)Pl[2(x − xi )/�x], the Pl being orthogonal polynomials on the interval [−1,
+1], such as the Legendre polynomials, which we use in the following. Any function f̃
belonging to VN ,M can be expanded on this basis,

f̃ =
∑

i=1,N

∑
l=0,M

ai,l�i,l(x), (25)

and the L2 scalar product and the associated norm reduce to

〈g̃, f̃ 〉 =
∫

g̃(x) f̃ (x) dx = �x

2

∑
i=1,N

∑
i=0,M

c2
l bilail , ‖ f̃ ‖2

N ,M = �x

2

∑
i=1,N

∑
l=0,M

c2
l a2

il ,

for any pair of functions f̃ = ∑ ∑
ail�i,l(x) and g̃ = ∑ ∑

bil�i,l(x) of VN ,M , with

c2
l =

∫ 1

−1
d� P2

l (� ) = 2

(2l + 1)

being normalization factors.
Since the basis �i,l is orthogonal for this scalar product, the dual basis � i,l is simply the

projection on �i,l . Therefore a function f (x) is approximated by the expansion (25) with
coefficients ai,l which are given by

ai,l = 2

�xc2
l

∫
Ci

�i,l(x) f (x) dx = 1

c2
l

∫ +1

−1
Pl(� ) f

(
x̄i + �x

2
�

)
d�. (26)

These coefficients can be given a physical meaning: ai,0 is the “cell average” f̄ i and it
can be seen by using a Taylor expansion of f (x̄i + �x

2 � ) that the coefficients of degree l
are related to the spatial derivatives of f of order at least equal to l,

ail =
∑

k=0,...

�l,k Dl+2k f (xi ), (27)

since
∫ 1

−1 � k Pl(� ) d� = 0 if either k < l or k + l is odd. We have used the notation D =
�x∂/∂x , with the �l,k being numerical coefficients.

For each cell, there are therefore M + 1 independent data, including the cell average and
local derivatives up to order M ; the order M of the truncation characterizes the number
of details retained in the function f̃ , which is a piecewise constant function for M = 0, a
piecewise linear function for M = 1, etc. . . . No requirements for the continuity of f̃ and
its derivatives have been imposed up to now and the approximating function f̃ is in general
discontinuous (hence the name “discontinuous Galerkin” methods) at the cell borders {xi },
since f̃ (xi ) = ∑

l=0,M ai,l ≡ f −
i in the cell Ci and f̃ (xi ) = ∑

l=0,M ai+1,l(−1)l ≡ f +
i �=

f −
i in the cell Ci+1.
Let us come back to the solution of the advection equation, Eq. (23), and suppose

that the initial condition is the approximate function f̃ (x, 0) = ∑
i,l ail(0)�i,l(x) ∈ VN ,M ;

then its solution at time t is exp{t�} f̃ (x, 0), which, in general, does not belong to VN ,M

but may be projected (cf. Eq. (26)) onto this space to give the approximate solution
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f̃ (x, t) ≡ T̃ t (v, �x, t) f̃ (x, 0), with components

ai,l(t) = 2

�xc2
l

∫
�i,l(x) exp{t�} f̃ (x, 0) dx =

N∑
j=1

M∑
k=0

Ai,l
j,k a j,k(0), (28)

which is the analogue of Eq. (12) in the simple case of the 1d advection equation. The
matrix elements of the projection T̃ t (v, �x, t) of the displacement operator exp{t�} on the
space VN ,M are given by elementary spatial integrations:

Ai,l
j,k = 2

�xc2
l

∫ L

0
�i,l(x)� j,k(x − vt) dx . (29)

Note that T̃ t (v, �x, t) depends only on the “signed” Courant number, vt/�x . The explicit
expression of the matrix elements can be found in Van Leer [20] for the case M = 1 and
in Appendix III of the present paper for the cases M = 1, 2. The scheme given in Eq. (28)
advances in time the N ∗ (M + 1) data, including the cell averages { f̄ i } as well as the local
derivatives {∂k fi/∂xk} for k = 1, M and its time accuracy ∼O(�t M+1), and is entirely
determined by the order M of the projection.

Some important properties of this scheme are worth mentionning.

1. It is “local” in the sense that at a given time, the data {ai,l}l=0,M depend only on the
properties of the function to be approximated within the cell Ci , a fact which contributes
considerably to the simplicity of the calculations.

2. If vt/�x = n, n being a positive or negative integer, then Ai,l
j,k = 
 j−(i+n)
k,l , meaning

that the approximate solution is simply displaced by n cells without deformation. Therefore
the operator T̃ t (v�t/�x) can always be split into a simple translation by an integer number
of cells followed by a more “diffusive” displacement corresponding to the noninteger part
of the Courant number. This property allows, in principle, use of large time steps (see
Fijalkow [12]) but actually this is limited by the time accuracy which is required when
using the splitting method.

3. The “mass,”

Q(L , t) =
∫ L

0
f (x) dx =

∑
i=1,N

ai,0,

is exactly conserved since for v ≥ 0 (the same arguments apply for negative velocities)

Q(L , t) = 1

�x

∑
i=1,N

∑
k=0,M

a j,k(0)
∫

Ci

�i,0(x)� j,k(x − vt) dx

= 1

�x

∑
k=0,M

a j,k(0)
∫ L

0
� j,k(x − vt) dx = 1

�x

∑
k=0,M

a j,k(0)
∫ L

0
� j,k(x) dx

= Q(L , 0)

by using the assumption of periodicity and the fact that the cells cover the whole interval
[0, L], so that

∑
i=1,N

∫ L
0 Hi (x)g(x) dx = ∫ L

0 g(x) dx .
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4. The operator T̃ t keeps some properties of the displacement operator exp{t�}; for
example a very useful symmetry can be obtained if one makes the change of variable
y = x − vt in the expression (29) of the matrix elements and uses the periodicity assumption

c2
l Ai,l

j,k(vt/�x < 0) = c2
k A j,k

i,l (vt/�x ≥ 0).

Therefore, to calculate the matrix elements Ai,l
j,k , it is necessary to calculate only those

corresponding to positive velocities.

After elementary manipulations, using in particular the periodicity assumption, we obtain

〈T̃ −t g̃, f̃ 〉 = 〈g̃, T̃ t f̃ 〉

for any couple of functions f̃ and g̃ of VN ,M . This can be applied now to the case where
g̃ = T̃ t f̃ , showing that

‖T̃ t f̃ ‖2
N ,M = 〈 f̃ , T̃ −t T̃ t f̃ 〉

with respect to the VN ,M norm. Since T̃ −t is not the inverse of T̃ t , except when |vt/�x |
is an integer, the norm of the approximate solution does not remain constant. Actually the
operator T̃ −t T̃ t is “contracting,” as illustrated by the simple case when M = 0 and only cell
averages f̄ i are considered; in that case, f̄ i (t) = (1 − 
) f̄ i (0) + 
 f̄ i−1(0) for i = 1, . . , N
and

‖ f (t)‖2
N ,0 = �x

∑
i=1,N

[(1 − 
) f̄ i (0) + 
 f̄ i−1(0)]2

= �x
∑

i=1,N

[
(1 − 
)2 f̄ 2

i + 2
(1 − 
) f̄ i f̄ i−1 + 
2 f̄ 2
i−1

]

= ‖ f ‖2
N ,0 + 2
(1 − 
)�x

∑
i=1,N

f̄ i ( f̄ i−1− f̄ i )

= ‖ f ‖2
N ,0 − 
(1 − 
)�x

∑
i=1,N

( f̄ i−1 − f̄ i )
2.

Since 0 ≤ 
(1 − 
) ≤ 1/4 for 0 ≤ 
 ≤ 1, ‖ f (t)‖2
N ,0 is smaller than ‖ f ‖2

N ,0 and the dif-
ference is smaller than the expression

0.25�x
∑

i=1,N

( f̄ i−1 − f̄ i )
2,

which is fully determined by the initial jumps of f̄ at the cell borders, a result similar to
that obtained by Cockburn [19], who used the differential form of the advection equation.

Up to now, the coefficients ai,l have been considered independent quantities. However,
they can be expressed in terms of the { f̄ j } at any desired order of accuracy. This operation
may be understood as a projection from the function space VN ,M onto a subspace of smaller
dimension N . Following an argument given by Harten [21], we may proceed as follows.
The first step is to notice that the cell averages f̄ i are the values at the cell centers x̄i of the
function f̄ (x) obtained by smoothing the function f on a sliding box of width �x :

f̄ (x) = 1

�x

∫ �x/2

−�x/2
f (x + x ′) dx ′ = 1

2

∫ 1

−1
f

(
x + �

�x

2

)
d�.
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The derivatives are also obtained by smoothing the corresponding derivative of f :

∂k f̄

∂xk
= 1

�x

∫ �x/2

−�x/2

∂ f (x + x ′)
∂x ′ dx ′.

A Taylor expansion shows that

Dr f̄ (x) =
∑

k=0,...

	l,k Dr+2k f (x), (30)

where the �l,k are numerical coefficients. This expression is very similar to (27) of the
coefficients ai,l in terms of the derivatives of the function f . The next step is to truncate
these expansions at order M , i.e., to assume that DM+1 f (x) � 0, and to eliminate the remain-
ing derivatives D2k+1 f (x) between Eqs. (27) and (30) to obtain a system relating the {al}
and {Dl f̄ }. For example at order M = 2,

a0(x) = f̄ (x), a1(x) = 1

2
D f̄ (x), a2(x) = 1

4
D f̄ (x).

Using standard formulas for the discrete derivatives, one obtains to second order in �x
(Fromm [22], Van Leer [20], Fijalkow [12])

ai,0 = f̄ i , ai,1 = 1

4
[ f̄ i+1 − f̄ i−1] (31)

and

ai0 = f̄ i , ai1 = 1

24
( f̄ i−2 − 8 f̄ i−1 + 8 f̄ i+1 − f̄ i+2),

(32)

ai2 = 1

24
( f̄ i−2 − 8 f̄ i−1 + 8 f̄ i+1 − f̄ i+2)

to fourth order. Then Eq. (28) reduces to the simple form (
 = |v�t/�x |)

f̄ i (t + �t) =
j=M∑

j=−(M−1)

A j (
) f̄ i+ j (t) (33)

for positive velocities, or

f̄ i (t + �t) =
j=M+1∑
j=−M

A j (
) f̄ i− j (t) (34)

for negative velocities. To second order in �x(M = 1), Eqs. (33) and (34) are known under
the name of “Van Leer’s scheme” and widely used in fluid dynamics (see, for example,
Godlewski and Raviart [17]) and plasma physics (see, for example, Fijalkow [12]). The
expressions for the coefficients A j (
) are given in Appendix III for the cases M = 1 and
M = 2, and we designate by “VL2” and “VL3” the corresponding numerical schemes.
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3.3.2. Hermite interpolation. Consider now interpolants f̃ (x) that are smooth, i.e.,
continuous, as are their derivatives up to some order m. The natural function spaces to
consider are then the “smooth Hermite” spaces HN M (see Ciarlet et al. [23]) with M =
2m + 1. Now m + 1 data fi , . . . , f (m)

i (the values of the function f and its first m derivatives)
are given at the cell boundaries xi and we use the fact that for each cell Ci there is a unique
interpolation polynomial Qi (x) of degree M = 2m + 1 such that

Dk Qi (xi−1) = f (k)
i−1, Dk Qi (xi ) = f (k)

i , 0 ≤ k ≤ m,

where, as above, D = �x∂/∂x . The interpolating function f̃ (x), defined on the whole
interval [0, L] and equal to Qi (x) on the cell Ci , is then continuous and differentiable up to
order m. The function space HN M generated by all possible sets of data { fi , . . . , f (m)

i } is a
linear vector space of dimension (M + 1) ∗ (N + 1)/2 (almost one half smaller than) VN M

and contains functions which are smoother than those of VN ,M . An important point is that
there is also a convenient basis {hi,k(x)} of HN M which is made of piecewise polynomial
functions which vanish, as do all their derivatives, outside the interval [xi−1, xi+1] for
1 ≤ i ≤ N − 1 and satisfy

Dlhi,k(x j ) = 
k,l
i, j , 0 ≤ k, l ≤ m. (35)

The corresponding basis h∗
i,k of the dual space is easily seen to be h∗

i,k = Dk
(x − xi ).
Therefore,

f̃ (x) =
N∑

i=0

m∑
l=0

f (l)
j hi,1(x), Dk f̃ (x) =

N∑
j=0

m∑
l=0

f (l)
i Dkhi,1(x), 1 ≤ k ≤ m. (36)

The basis hi,k is not orthogonal since the support of hi,k(x) overlap with that of hi−1,k(x)
and hi+1,k(x) but its dual h∗

i,k is particularly simple so that the anologue of Eq. (26) is

trivial, since it is the values { fi , . . . , f (m)
i } of the function and its first m derivatives which

appear in the expansion of Eq. (36). This can be used to obtain the discretization T̃ t of the
displacement operator in the HN M space, since

exp{−t�} f̃ (x) =
N∑

j=0

m∑
l=0

f (l)
j (0)Dkh j,1(x − vt)

can be projected onto the space HN M ,

f (l)
i (t) =

N∑
j=0

m∑
k=0

Ai,l
j,k f (k)

j (0),

with the matrix elements of T̃ t being given by

Ai,l
j,k ≡ Dl h j,k(xi − vt). (37)

The “cubic interpolated propagation scheme” proposed by Nakamura and Yabe [24]
corresponds to the case M = 3(m = 1). These authors have shown also that the scheme
conserves the total mass, an argument which applies in the more general formulation given
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here. The details for the case M = 3 are given in Appendix III, corresponding to a scheme
which is of third order in the time step; in what follows this scheme is designated by the
abreviation “HMN.”

3.3.3. Spline interpolation. In the Hermite interpolation, the (N + 1)(m + 1) quantities
fi , . . . , f (m)

i are considered as independent. One may increase the regularity requirements
by asking that the derivatives of the interpolant be continuous up to order 2m; this means that
m linear relations have to be satisfied at the cell boundaries (we consider here the periodic
case) so that the derivatives f (1)

i , . . . , f (m)
i can be expressed in terms of the values fi of the

function (see Ciarlet et al. [23], Rubin and Khosla [25]). This corresponds to a projection
of the space HN M onto a much smaller subspace, the spline subspace SN M of dimension
N of very regular piecewise polynomial functions (of degree at most M = 2m + 1). In
this space the so-called B-spline functions {Bi (x)} provide a basis; their 2mth derivative
is a continuous piecewise linear function (see Ciarlet et al. [23]) and they have a minimal
support covering M + 1 cells. However this basis and the associated one in the dual space
do not allow a simple and direct determination of the coefficients of the development of
the interpolant f̃ in terms of B-splines; in all cases, a linear system of equations needs to
be solved to determine these coefficients. The cubic spline interpolation (m = 1, M = 3)
has been used by a number of authors (see, for example, [26]) providing a scheme which
is third-order accurate in space but requires the solution of a linear, tridiagonal system
of equations; the details are presented in Appendix III and the corresponding scheme is
designated in what follows by the abreviation “SPL.”

3.4. Semi-Lagrangian Method

Another possible approach for the solution of the advection equation is obtained by
integrating Eq. (23) over the cell Ci ,

∂ f̄ i

∂t
+ v

�x
[ f (xi+1, t) − f (xi , t)] = 0,

leading to an equation which relates the time variation of the cell averages, { f̄ i }1≤i≤N , to
its local values at the cell boundaries, { fi }0≤i≤N , i.e., at the grid points xi . Then, integration
over the time interval [0, t] gives

f̄ i (t) = f̄ i (0) + �+
i − �−

i , (38)

where the time-averaged fluxes across the cell boundaries �±
i are given by

�+
i = − v

�x

∫ t

0
f (xi+1, � ) d�, �−

i = − v

�x

∫ t

0
f (xi , t + � ) d�. (39)

Equation (38) is still an exact one; however, it mixes the cell averages f̄ i and time
integrals of the distribution function at the cell boundaries. Two steps are necessary to
calculate approximate values of these integrals in term of the cell averages. First, Eq. (23)
implies that f is constant along a characteristic curve x − v� = const. (hence the often-
used name “semi-Lagrangian”). For positive velocities, v ≥ 0 (the same kind of arguments
applies to negative velocities), and sufficiently small time intervals t , the characteristic
arriving at the point xi+1 at time 0 ≤ � ≤ t comes from a point x+ = x̄i + (�x/2 − v� )
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inside the cell Ci while the characteristic arriving at the point xi at the same time comes from
a point x− = x̄i−1 + (�x/2 − v� ) of the cell Ci−1. Therefore, the first step is to evaluate
f (x−, 0), f (x+, 0) by any of the interpolation schemes described above, for example the
discontinuous Galerkin approximation,

f̃ M (x+) =
M∑

l=0

ai,l(0)�i,l(x+), f̃ M (x−) =
M∑

l=0

ai−1,l(0)�i−1,l(x−).

The next step is to integrate over � to get the time-averaged fluxes; using as above the
notation 
 = |vt/�x |, one obtains immediately a relation between the “numerical fluxes”
and the matrix elements Ai,0

i,l of the projection TV (t) of the displacement operator

�+
i = (

Ai,0
i,0(
) − 1

)
ai,0(0) +

M∑
l=1

Ai,0
i,l (
)ai,l(0) (40)

and

�−
i = −

M∑
l=1

Ai,0
i−1,l(
)ai−1,l(0) (41)

for a positive velocity v ≥ 0.

4. OPEN BOUNDARY CONDITIONS

In the previous section, we assumed that the system is spatially periodic. However, there
are a number of interesting problems where open boundaries are necessary and we discuss in
the following a possible strategy to insert open boundary conditions in the Vlasov equation
when the system is finite in one direction and periodic in all other space directions. The
corresponding conditions on the electrostatic or the electromagnetic field are discussed in
Appendix II.

We consider the one-dimensional situation where the numerical domain is open at both
ends x = 0 and x = Lx and we limit our analysis to the case of a constant flux of “entering”
particles at both ends, the extension to the time-dependent case being straightforward. We
have then to impose the following boundary conditions:

v f >(v) = given for v ≥ 0 at x = 0,
(42)

v f <(v) = given for v ≥ 0 at x = Lx .

The most natural way to do that is to use the “flux” formulation. Consider a specific
boundary, say x = 0, which is also the left boundary of the cell C1, and positive velocities
v ≥ 0. In this case, the time-averaged flux �+

1 across the right cell boundary is given by the
dynamics in the interior of the numerical domain,

�+
1 (v) = − v

�x

∫ �t

0
d�{ f (�x, v, t + � )},
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while the flux �−
1 “transported” across the boundary x = 0 by a characteristic coming from

outside the numerical domain represents the influence of the “outside world” and must be
set to

�−
1 (v) = −
 f >(v), v > 0, (43)

with 
 = |v�t/�x |. At the other boundary, the cell CN , and negative velocities v < 0, the
flux �−

N (v) is fixed by the interior while

�+
N (v) = 
 f <(v), v < 0. (44)

Besides the modification of the boundary fluxes, nonperiodic boundary conditions will
affect the truncatures (31) and (32) since the numerical expressions of the spatial derivatives
must be modified to use only points in the interior of the domain (i.e., a noncentered formula),

D f̄ 1
∼= 1

2
(− f̄ 3 + 4 f̄ 2 − 3 f̄ 1)

in the cell C1 and

D f̄ N
∼= 1

2
(− f̄ N + 4 f̄ N−1 − 3 f̄ N−2)

in the cell CN .
In summary, the advancing scheme, Eqs. (33) and (34), must be somewhat modified in the

case of open boundary conditions and, using the notation { f̄ } = { f̄ 1, f̄ 2, . . . , f̄ i , . . . , f̄ N },
may be cast in the compact matrix form

{ f̄ }(t + �t) = A∗(
){f̄} + B(
). (45)

In this equation, the boundary flux B is given by

B = (−�−
1 , 0, 0, . . . , 0), v > 0, B = (0, 0, 0, . . . , �+

N (v)), v ≤ 0,

while the matrix A∗, when M = 1, corresponds exactly to the formula (33)

A∗
i, j = A j−i (
), v > 0, A∗

i, j+1 = Ai−( j+1)(
), v ≤ 0, (46)

inside the numerical domain, i.e., for 2 < i < N − 1, j = i − 2, i + 1; the matrix elements
A∗

1, j , A∗
2, j , A∗

N , j corresponding to the boundary cells differ and are given in Appendix III.
Despite these modifications the matrix A∗ keeps some symmetry,

A∗
i,i−l(v < 0) = A∗

i,i+l(v > 0), l = −2, 1, i = 3, N − 2; (47)

A∗
1,1+l(v < 0) = A∗

N ,N−l(v > 0), l = 0, 2; (48)

A∗
N−k,N−k−l(v < 0) = A∗

1+k,1+k+l(v > 0), k = 0, 1, l = 0, 2.

If one multiplies the advection equation (23) by f and integrates over space and time one
obtains an equation describing the conservation of the quantity I2 = ‖ f ‖2= ∫ L

0 f 2(x ′, t) dx ′,

I2(�t) = I2(0) − v

∫ �t

0
d�{ f 2(x = L , � ) − f 2(x = 0, � )},



512 MANGENEY ET AL.

FIG. 1. The largest eigenvalues of the matrix A∗(−v)A∗(v) (stars) and of A∗∗(−v)A∗∗(v) (triangles). The
parameters which have been used are N = 100, 
 = 0.05 and �t/trel = 0.1.

whose discretized form is

‖ f ‖2 = 〈 f (0), A∗(−v)A∗(v) f (0)〉 + · · · boundary terms.

The second term corresponds to the boundary terms and depends only on the values of
f at x̄1, x̄2, and x̄N . The important point is that in the periodic case the first term on the
RHS is always smaller than ‖ f (0)‖2, expressing the stability and dissipation of the scheme.
In the open case this is no longer true. Indeed, the eigenvalues of the matrix A∗(−v)A∗(v)
are displayed in Fig. 1 for the case when 
 = 0.05 and N = 100; they are real, positive
and smaller than 1 except for the largest one, which lies slightly above 1, indicating the
possibility of unstable behavior if the initial condition has a significant amplitude on the
corresponding eigenvector, which is strongly localized close to the boundaries. Therefore,
the scheme given by Eq. (45) is not unconditionally stable.

A way to improve the stability (see, for example, Abarbanel and Chertock [27]) consists
of modifying the incoming fluxes �−

1 and �+
N (see Eqs. (43) and (44)) by

�−
1 = v( f̄ − f >)

trel
, �+

N = −v( f̄ N − f <)

trel
,

expressing a relaxation of the border cell average fluxes toward the prescribed one. If trel

is chosen adequately, then the scheme is stable. Indeed, to these expressions of the fluxes
corresponds a new matrix A∗∗; the eigen values of A∗∗(−v)A∗∗(v) are plotted in Fig. 1 for
the same values as above and �t/trel = 0.1. It may be seen that these eigenvalues are all
smaller than 1 and differ very little from those of A∗(−v)A∗(v) except for the unstable one.

5. COMPARISON BETWEEN VARIOUS SCHEMES

In this section we compare the performances of several of the schemes discussed above
for solving the advection equation, Eq. (23): the standard second-order Van Leer scheme,
VL2; the third-order Van Leer, VL3; the Hermite interpolation scheme, HMN; and the
spline scheme, SPL.

It should be mentioned that a comparison, in the electrostatic limit, between the Van Leer
scheme and cubic splines interpolation method was carried out by Sabatier et al. [28], who
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found, for the same number of grid points, that cubic splines conserve better the energy of
the system at the expense of a longer computational time (more or less a factor of three).
This comparison was done for the full Vlasov–Poisson system; here we limit ourselves to
the advective part in 1d with periodic boundary conditions where an exact solution of the
advection equation (23) can be obtained in Fourier space,

f ex
k (t) = e−ikvt fk(t = 0), (49)

where fk(t = 0) is the Fourier transform of the initial distribution f (x, t = 0). Using the
same initial condition and a large number of iterations (t = Niter�t, Niter � 104), the nu-
merical solution at time t obtained by a particular scheme is Fourier transformed in space,
giving the Fourier components f̃ k(t); we calculate then the complex ratio Gk(t) between
the exact and approximate solution:

f̃ k(t) = Gk(t) f ex
k (t). (50)

The numerical damping rate and dispersion are given by 
 (k) = log(‖Gk‖)/t and � =
d(arg(Gk))/t, respectively. In Figs. 2 and 3 we plot, for several values of the courant number
vc = |v�t/�x |, 
 and� as functions of k/kmax, where the maximum wave number is given
by kmax = �Nx/Lx . In all the frames of these figures, the four curves correspond to the
schemes SPL (solid line), HMN (dashed line), VL3 (dashed–dotted line), VL2 (dashed–
three dotted line). For all cases, we used the same number of mesh points, N = 128, the
time step �t = 0.05, and the mesh size �x = 0.1.

FIG. 2. The numerical damping rate vs k/kmax for the different schemes: SPL (solid line), HMN (dashed line),
VL3 (dashed–dotted line), VL2 (dashed–three dotted line). The four frames correspond to different values of the
Courant number, vc = |v�t/�x |.
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FIG. 3. The numerical dispersion vs k/kmax for the different schemes, SPL (solid line), HMN (dashed line),
VL3 (dashed–dotted line), VL2 (dashed–three dotted line). The four frames correspond to different values of the
Courant number, vc = |v�t/�x |. No numerical dispersion corresponds to � = 0.

It is seen that in all cases 
 � 0 for k/kmax ≤ 0.1. The second-order Van Leer scheme,
VL2, has the strongest damping rate, as expected for the lowest order scheme. For small
Courant numbers the spline method, SPL, is the least damped, while for Courant numbers
greater than 0.2 it is the Hermite interpolation, HMN, which performs the best.

On the other hand, Fig. 3 shows that the least dispersive scheme is always the HMN,
probably because the first derivative is also advanced in time. We also observe a degradation
of the phase accuracy of the SPL scheme when increasing the Courant number. Surprisingly,
the second-order VL2 scheme performs as well as third-order schemes.

The results presented in these figures were obtained with the same number of grid points;
therefore the computational times used by the different schemes differ strongly. It would
be more meaningful to present this comparison for the same computational effort, even if
in this case the memory requirement is different. This is not easy since the computational
time depends on several parameters, such as the degree of optimization and the machine
used for the calculations. We have chosen to use a different number of grid points for the
different schemes corresponding roughly to the same CPU time. In particular, for the SPL
method, which requires the inversion of a tridiagonal matrix, we estimated, for the same
number of grid points, TC PU (SPL) � 3TC PU (VL2) (see Appendix V for the details), in
agreement with the estimation given in Ref. [28]. Pohn et al. [29] find only a 10% increase
in the computational time of SPL with respect to VL2; we underline the fact that our
computational test is limited to the pure 1d advection equation with constant velocities,
while Refs. [28] and [29] consider the full Vlasov equation in the 1d–1V and 1d–3V phase
space, respectively.

The results of the comparison between the VL2, VL3, HMN, and SPL with 180, 120, 90,
and 60 grid points, respectively, are shown in Figs. 4 and 5. All the other parameters have
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FIG. 4. The same as Fig. 2 with Nx = 180 120, 90, and 60 for the VL2, VL3, HMN, and SPL schemes,
respectively. Here k∗

max is the maximum wave vector of the VL2 case.

not been changed. In these figures, the wave vector is normalized to the maximum wave
vector k∗

max of the VL2 case.
Now the damping rates are almost identical; on the other hand, we observe that in phase

precision the VL2 scheme performs best while the SPL scheme is the most dispersive one.

FIG. 5. The same as Fig. 3 with Nx = 180, 120, 90, and 60 for the VL2, VL3, HMN, and SPL schemes,
respectively. Here k∗

max is the maximum wave vector of the VL2 case.
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This is probably a direct consequence of the fact that the number of mesh points in the SPL
method is significantly lower than in the other schemes.

It is worth mentioning that in all cases the total mass and energy are very well conserved.
This is true also for the second- and third-order invariants I n = ∫

f n dx dv, n = 2, 3.
In conclusion, there is no compelling argument for the choice of a particular scheme;

we just note that the SPL scheme requires less memory than the other schemes for the
same total computational time, but at the expense of the phase precision. Furthermore, our
test here is limited to the advection equation, while a full comparison between the different
schemes should be made on the full Vlasov equation in the electrostatic and electromagnetic
case, with particular attention on the behavior of the invariants of the system and on the
small-scale features, as, for example, phase space filamentation.

6. PARALLELIZATION OF THE ALGORITHM

As discussed in the Introduction, the computational effort required to solve the Vlasov–
Maxwell system of equations, Eqs. (4)–(6), is significant and today such simulations could
only be afforded on large parallel supercomputers. To exploit the full computational power
of these machines a scalable parallel algorithm for the resolution of the equations must
be implemented. In this section we discuss the parallelization strategy we have chosen to
follow and the structure of the resulting code, using in particular “metalanguage” schemes
of the key parallel routines.

The most demanding equation in terms of computational resources is by far the Vlasov
equation; therefore we limit our discussion to this equation for the case of a 5d phase space
(x, y, vx , vy, vz), where (x, y) are the spatial coordinates in a Cartesian reference frame
and (vx , vy, vz) the velocity coordinates. Indeed, at the moment the full 6d case, while
being in principle a straightforward extension of the 5d one, could be solved only with a
numerical resolution too small to be of interest to plasma physics research. Only one particle
species is considered: periodic boundary conditions are used in the physical plane (x, y),
while in the velocity space the distribution function is set to zero outside the numerical
domain.

6.1. Parallelization Strategy

For the integration of the Vlasov equation, we use a uniform grid with Nx × Ny mesh
points in physical space and (2Nvx + 1) × (2Nvy + 1) × (2Nvz + 1) points in velocity
space covering the five-dimensional numerical domain 0 ≤ x ≤ Lx , 0 ≤ y ≤ L y, −vmax

x ≤
vx ≤ vmax

x , −vmax
y ≤ vy ≤ vmax

y , −vmax
z ≤ vz ≤ vmax

z . The corresponding distribution func-
tion f (nx , ny, −Nvx : Nvx , −Nvy : Nvy, −Nvz : Nvz) is by far the largest data structure
and its time advance uses repeatedly, both for the spatial and the velocity advance, the
translation described by Eqs. (33) and (34) (M = 1), which corresponds in practice to an
interpolation formula.

A simple profilling analysis done on a scalar implementation of the algorithm presented
in Section 3 shows that the updating cycle of f takes (for all the translations involved in a
time step) almost 90% of the total execution time.

Let us now look in some detail at the algorithm. First of all, we observe that the five-
dimensional distribution and the updating algorithm as a whole have an high degree of sym-
metry with respect to the phase space coordinates; indeed, exactly the same computations
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FIG. 6. The calculation of f̄ i in Eqs. (33) and (34) (M = 1) in the case of the spatial translation operator. Here
g is a working array and Ax (c) and Ay(c) are the coefficients described in Section 11.2 (for example, Eq. (65) in
the case of positive velocities). The sum index c runs on the neighbor cell.

are required to update the x and y coordinates, as shown explicitly in Fig. 6, and the same
applies to to the velocity coordinates. Considering this symmetry property and the large size
of the 5d distribution function array, the SPMD (single program multiple data) paradigm
has been choosen for the parallelization of the code, so that each processor executes the
same computations on its local block of data.

When analyzing the whole time-step cycle, it appears that the velocity space updating
is local, at any given point (xi , y j ) of physical space (i.e., does not require information
from any other spatial point) and vice versa for the spatial updating. Furthermore, the
spatial and velocity updating cycles are completely independent. On the other hand, the
computational weight of the two updating algorithms are different since in the velocity
3d space seven successive translations are required, Eq. (21), while the updating in the
2d physical space requires only four translations, two translations before the updating
with respect to the velocity coordinates and two after (see Eq. (22)). Therefore, since
each translation along a given direction requires nearby data communication along that
direction (see Eqs. (33) and (34) (M = 1)), it is more convenient to distribute the real space
only.

6.2. Data Distribution and Communication

As anticipated the SPMD parallelization strategy requires the data to be equally dis-
tributed among processors; therefore the two-dimensional space grid points have been
partitioned into rectangular blocks (the number of blocks is equal to the number of pro-
cessors) and distributed blocklike across the processors logically arranged on a 2d mesh,
with each block being assigned to a processor. This particular distribution minimizes the
amount of data to be exchanged among the processors, when the block border values of the
distribution are to be accessed (the total amount of exchanged data scales as the square root
of the number of processors).

The updating algorithm of the distribution function for a given value of the real space
coordinates uses the values of the distribution function in the two neighboring cells for
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FIG. 7. Data distribution. (A) Discretized real space integration grid. Black squares represent cells being
updated, while gray squares are cells used in the updating cycle (see Fig. 6). (B) Real space grid as it is distributed
among four processors (P0, P1, P2, and P3). Gray rectangles represent the cells located on processors P2 and P1
and required to update the cells of processor P0. (C) Gray regions, cells communicated among processors.
(D) Communication patterns between processors, implemented by the algorithm listed in Fig. 6.

each direction, which may or may not belong to the same block. This is illustrated in
Fig. 7 where the physical space discretized on the numerical grid is displayed; panel B
shows the partition for a four-processor distribution. Using this data distribution, the up-
dating of the distribution function values is local (no communications required) for the
cells with a distance larger than two (cells) from the local block border (i.e., black cell
in the middle of the grid of Fig. 7A). The cells in the upper left corner, bottom left
side, and upper right side of Fig. 7A illustrate how periodic boundary conditions are
implemented.

The updating of the distribution function in a cell close to the border (black cells in
Fig. 7B) requires the values of the distribution function stored on other processors (gray
rectangles), so that any given processor needs the boundary data only from its neighboring
processors in the x and y directions. Figure 7C shows the total area of data communicated
in an updating cycle (gray region). Thanks to the block partitioning, the communications
in the updating loop along a given direction are overlapped (see Fig. 7D, where processor 0
communicates with processor 1 while processor 2 communicates with processor 3) and it is
possible to implement the communications of the block borders values in a single call using
a send-and-receive subroutine (i.e., a single call to the MPI (message passing interface)
subroutine MPI SENDRECV). Finally, since data communication occurs only between
processors that are logically first neighbors, it is possible on many supercomputing systems
to associate a logical processor layout with a physical processor layout, with a consequent
increase in the code performance.
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FIG. 8. Updating parallel loop using MPI library. Here f and g are explicitly distributed among proces-
sors. Each processor has a subset of the whole array of dimension (Nxlocal

+ 4, Nylocal
+ 4, Nvx , Nvy , Nvz ), where

Nxlocal
and Nylocal

are the (x, y) dimensions of the local block of real space grid (see also Fig. 7B), while the
+4 accounts for the cell of the blocks borders. A new subroutine performing the borders cells exchange
(EXCHANGE BORDER VALUES) has been introduced in the code.

6.3. Algorithm Implementation

Two different parallel programming scheme, HPF (high performance Fortran) and MPI,
have been used to implement the data distribution using the SPMD paradigm.

• HPF. This choice is related to the fact that one of our target platforms was the CRAY
T3E with a highly optimized HPF compiler and because only a little recoding is re-
quired. The parallelization of the code reduces to the addition of a few HPF directives
in the code source and the fortran statements remain unchanged with respect to the scalar
code.

• MPI. The choice of the MPI library guarantees an optimal portability, but now a
significant recoding is required and the communications must be handled explicitly. The
resulting updating cycle is displayed in Fig. 8. To distribute the data grid, the processors have
been organized on a two-dimensional logical mesh whose sizes are nprow and npcol (total
number of processors used in a given run = nprow ∗ npcol). Each processor is identified by
an MPI index (0 . . . nproc-1) and two mesh coordinates (myrow, mycol). On each processor
the sizes in the x and y directions of the local block of data are nxl (nxl = nx/nprow) and
nyl (nyl = ny/npcol); in this case a small extra amount of storage, with respect to the scalar
case, is required in order to store the border cells.

6.4. Other Data Structures and Input/Output

All the other relevant data structures, the electric and magnetic fields, and the currents are
distributed and parallelized in the same way. The calculations of the distribution function
moments (see Eq. (7)) is local and thus perfectly parallelized. Particular attention has
been paid to the code input/output (I/O) since the distribution f in a production run could
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FIG. 9. Execution time, in seconds, of the code for a benchmark on a numerical grid of size 322 × 613 on a
Cray T3E (using MPI and HPF), on an IBM SP3 (using MPI), and on an SGI Origin 3800 (using MPI) for different
numbers of processors. The SP3∗ values were obtained by exchanging the communication step with the loop over
the Nvx .

be as large as tens of gigabytes. Indeed, to save 10 Gbytes at 20 Mbytes per s (typical
sustained speed of a fast I/O system) takes 500 s. In the scalar code, the I/O is implemented
with a Fortran “write” instruction in a loop over all the elements. This straightforward
implementation has very poor performances (less than 10 Mbytes per s), especially on
supercomputers file systems where “RAID” technologies are used. We have improved the
I/O of the code by writing the distribution f by data blocks of a given size, thus obtaining
an increase in the performance up to 200 Mbytes per s.

6.5. Code Benchmarks

Two benchmark cases, with different communications/computations ratios, have been
performed on a CRAY T3E 1200 with 256 processors, an IBM SP3 (NightawkII) with
128 processors, and an SGI Origin 3800 with 128 processors available at the CINECA
supercomputing center (Bologna, Italy). The first benchmark reported in Fig. 9 was done
on a numerical grid of size 322 × 613 with a high communications/computations ratio; in
the second benchmark (see Fig. 10) the grid size is 642 × 213, with a lower communications/
computations ratio.

On the T3E, where both HPF and MPI schemes are allowed, the MPI implementation
is, on average, faster than the HPF one due to the hidden syncronizations introduced by
HPF. The scalability of the MPI code in the second benchmark, where the communications/
computations ratio is low, is good for all the architectures we have tested, while in the first
benchmark the MPI code scales only on the T3E. The good performances of the T3E in
the first benchmark is mainly due to the lower latency of the T3E network with respect
to the networks of the other two machines, since the bandwidth of the three networks are
comparable.

On the SP3, to test the relative weight of the latency with respect to the bandwidth, we
made a small improvement to the algorithm by exchanging the loop over the first velocity
component (vx ) with the cell boundary communications. In this case larger communi-
cation buffers are required. The resulting code communicates the same amount of data
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FIG. 10. Execution time, in seconds, of the code for a benchmark on a numerical grid of size 642 × 213 on a
Cray T3E (using MPI and HPF), on an IBM SP3 (using MPI), and on an SGI Origin 3800 (using MPI) for different
numbers of processors. The SP3∗ values were obtained by exchanging the communication step with the loop over
the Nvx .

with fewer syncronization points. The scalability performance of the code with this new
algorithm (see Figs. 9 and 10) is significantly better than the original one, confirming that
the critical communication parameter in this architecture is the latency and not the band-
width. Finally, note that for this code the SP3 and Origin 3800 machines have comparable
performances.

7. AN EXAMPLE

In this section we discuss a specific example of the evolution of the current filamenta-
tion instability (know also as the Weibel instability), which is an electromagnetic plasma
instability which combines two important points to be stressed here: (i) a significant 2d–3V
test case both for the linear and for the nonlinear regime and (ii) a physical, up-to-date
problem in plasma physics research of great interest both for laboratory and astrophysical
plasmas. For example, a debate has been recently raised about the role of this instability
for the plasma dynamics induced by an ultrastrong, ultrashort laser pulse in an overdense
plasma [30].

7.1. The Current Filamentation Instability

The current filamentation instability [31, 32] (hereafter CF instability) is a 1d electro-
magnetic instability driven by the presence of electron momentum anisotropy generated,
for example, by the breaking of large-amplitude plasma waves. The importance of this
instability is that a dipolar magnetic field is generated during its linear development in the
direction perpendicular to the plane of the wavevector and of the electron beams. Recently,
this mechanism of evident interest for space plasmas has received much interest in the
laser-plasma interaction context in order to explain the intense magnetic field occurring
in the wake of an ultraintense, ultrashort laser pulse propagating in an underdense plasma
[33]. The physical mechanism of the CF instability, similar to the Weibel instability [34]
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in the case of electron temperature anisotropy, can be described as follows. When a beam
of fast electrons is generated in the plasma, then a counterpropagating, compenetrating
electron beam carried by the cold component of the plasma is immediately produced in or-
der to maintain quasineutrality. Then, the total net current in the plasma is zero, but the two
resulting electron currents are unstable since any transversal disturbance is reinforced by
the repulsion of the two oppositely directed currents. As a result, the “free” kinetic energy
stored in the electron beams can be partly converted into magnetic energy, giving rise to a
nonpropagating magnetic field (i.e., the real part of the frequency is zero) which grows ex-
ponentially in time. When the speed of the electron beams approaches the velocity of light,
the counterfilamentation instability has a growth rate comparable to the electron plasma
frequency. Ions can thus be assumed to be immobile, providing a uniform neutralizing
background.

By using a standard normal mode approach, the dispersion relation of the 1d CF in-
stability was obtained in Ref. [35] (see Refs. [36] for the 2d case) in the framework of
the two fluid electron equations. Here we recollect that in the 1d symmetric nonrelativis-
tic case the dispersion relation is characterized by the fact that the growth rate increases
linearly with the wavenumber in the small wavenumbers case (long wavelengths) and
saturates when the inverse of the wavenumber becomes comparable to the electron skin
depth.

In the following we discuss Vlasov–Maxwell simulations of the evolution of the CF insta-
bility driven by two counterstreaming electron beams directed along the z-axis of a Cartesian
reference frame perturbed by an initial random noise in the (x, y) plane. No variations are
assumed in the stream direction, i.e., ∂/∂z = 0. This configuration has been studied in the
relativistic limit in Ref. [37] by using particle-in-cell numerical simulations and recently
applied to the problem of energy transport in overdense plasma with applications to the fast
ignition concept [38].

7.2. Numerical Simulations

We normalize the Vlasov–Maxwell equations by using the speed of the light, the inverse
of the electron plasma frequency, and the electron mass as characteristic velocity, time
and mass, respectively, and we initialize the Vlasov–Maxwell code in the 2d (x, y) 3V
(vx , vy, vz) phase space with the distribution function

fe(t = 0) = 1

(�	)3/2
e−(v2

x +v2
y )/	

[
1

2
e−(vz−v0)2/	 + 1

2
e−(vz+v0)2/	

]
, (51)

where 	1/2 is the thermal velocity and v0 is the velocity of the electron beams. The
two initial electron beams are directed along the vz direction and the initial density is
uniform and equal to one, 〈n〉(x, y, t = 0) = 1. In the simulations discussed here we have
taken 	 = 0.002 and v0 = 0.2. We have considered two different initial perturbations:
(i) a monochromatic one with E = 0 and B = � sin(k0 y)ex (here � = 10−3 is the ampli-
tude and k0 = 1.0 the wavevector) and (ii) a white random noises. Equations (1)–(3)
are integrated in the (x, y) spatial domain of dimension (2� × 2�) with a velocity phase
space interval given by [−0.4, 0.4] in all directions on the numerical grid of size
162 · 413.
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FIG. 11. (A) The kinetic, magnetic, and electric energies Ek (continuous line), Em (dashed–dotted line),
and Ee (dotted line), respectively, versus time. (B) The total energy and total charge density error, �E = 1 − E,

�m = 1 − M , versus time.

In the following we discuss the results obtained with random initial conditions since the
monchromatic case gives, as expected, results in excellent agreement with those obtained
in Ref. [32] (run 4 in Table 1).

We used the algorithm summarized by Eq. (22) associated with a second-order Van Leer
discretization of the x, y, vx , vy, vz translations; periodic boundary conditions are used in
the spatial directions. In Fig. 11A, we plot the time evolution of the kinetic, magnetic, and
electric energy. This figure shows the exponential increase in the magnetic energy during
the linear regime, t < 50, with a growth rate 
 = 0.138 on the order of the homogeneous
fluid growth rate with wavevector k � 1. Then, the instability saturates in the nonlinear
regime and the magnetic energy becomes more or less constant, t > 70. As discussed in
Ref. [32], the saturation of the current filamentation instability is a direct consequence of
the kinetic trapping of the electrons close to the peaks of the magnetic field (we recall that,
on the other hand, in the fluid approximation a numerical divergence is observed as soon as
the nonlinear phase starts [36]).

In Fig. 12 we show the magnetic field in the (x, y) plane at four different times.
The initial random field is first organized into small-scale structures of vortex type which
then merge into larger vortices and eventually end up in an X -point structure. The X point
is also shown in Fig. 13A–C, where we show the shaded isocontours of the density,
the isocontours of the current parallel to the electron beams, and the electric field in the (x, y)
plane. On the other hand, the magnetic field Bz parallel to the electron beams (Fig. 13D)
seems not to be directly correlated to the X -point structure.

The energy and charge density conservation of the numerical algorithm is shown in
Fig. 11B, where we plot the deviation of the total energy and of the total charge density
from the initial values. This figure shows that after more than 150 inverse of the plasma
frequency, the energy and the charge density are very well conserved, with a maximum
error on the order of the 0.3%.
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FIG. 12. The magnetic field in the (x, y) plane at t = 0, 58, 78, 118.

FIG. 13. (A) The density n, (B) the z component of the current jz , (C) the electric field (Ex , Ey), and (D) the
z component of the magnetic field Bz in the (x, y) plane at t = 118.
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8. DISCUSSION AND CONCLUSIONS

A characteristic feature of the Vlasov equation is the tendency to produce small scales
in phase space, even in the absence of any electromagnetic field, a phenomenon called
“filamentation.” This is immediately seen from the “free-streaming” equation

∂ f (x, v, t)

∂t
+ v

∂ f (x, v, t)

∂x
= 0 (52)

starting at t = 0 with a distribution function which varies on the large spatial scales L =
2�/k0 with a sinusoidally modulated density

f (x, v, t = 0) ∝ [1 + a sin(k0x)] exp

(
− v2

2v2
t

)
.

At times t > 0, the solution of Eq. (52) is

f (x, v, t) ∝ (1 + a[sin(k0x) cos(k0vt) − cos(k0x) sin(k0vt)]) exp

(
− v2

2v2
t

)
.

The spatial scale is basically unchanged but the velocity variations are much more com-
plicated, with ripples having a characteristic scale v∗ = 1/k0t which decreases as time
goes on and reaches the numerical resolution �v in velocity space at times on the order of
tfil ∼ 1/(k0�v).

The filamentation process is affected in two ways by numerical schemes similar to those
which were described here. First, for a “reasonable” numerical resolution, the small-scale
structures associated with the filamentation are rapidly dissipated at the grid mesh size,
i.e., 
ss tfil > 1, where 
ss is the numerical damping rate associated with the largest wave
numbers k ∼ kmax (see, for example, Figs. 2 and 3). Second, some coarse graining is per-
formed when projecting the solution of the Vlasov equation onto a finite-dimensional
function space. This is well illustrated if one projects Eq. (52) onto the VM,Nv velocity
space

f (x, v, t) =
Nv∑

j=−Nv

M∑
l=0

b j,l(x, t)� j,l(v), b j,l(x, t) = 1

c2
l

∫ 1

−1
Pl(� ) f

(
x, v̄ j + �v

2
�

)
,

giving, for l = 0, i.e., the velocity cell average, an equation of the form

∂b j,0(x, t)

∂t
+ v̄ j

∂b j,0(x, t)

∂x
+ �v

2

∂b j,1(x, t)

∂x
= 0.

Using a truncature similar to (31) to express b j,1 in terms of the velocity derivative of b j,0

at lowest order in �v one obtains for the coarse-grained distribution b j,0 an equation of
diffusive type,

∂b j,0(x, t)

∂t
+ v̄ j

∂b j,0(x, t)

∂x
+

(
�v

2

)2
∂2b j,1(x, t)

∂x∂v
= 0, (53)

similar to those which have been extensively studied in the gravitational case (see Tremaine
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et al. [39]). The diffusive term is also very effective in the damping of the small velocity
scales.

As a result, finite-difference numerical simulations of the Vlasov equation usually do not
suffer from the numerical instabilities driven by filamentation.

However, the filamentation, or phase space mixing, is an important physical process. It
has been argued by Klimas and Farrell [5] that the corresponding difficulties could be by-
passed by applying some velocity averaging to the distribution function, in a spirit similar
to what we have just presented, without changing the basic physics. Such an averaging
does not influence the calculations of the electric charge and current densities, but the
averaged distribution function obeys a more complicated equation, similar to Eq. (53) with
a relaxation term containing a double derivative with respect to space and velocity. By
solving exactly this equation, one could hope to follow the correct dynamics of the system,
even if only the averaged distribution is known. For this to be true, it would be necessary to
have a one-to-one relation between the “true” distribution function and the averaged one,
which is obviously not the case: within the framework of the present paper, this would
mean that the velocity dependence of the distribution function is fully described by the
coefficients b j,0, b j,1.

Most probably, the filamentation problem cannot be properly studied within the strict
Vlasov approximation, since the formation of smaller and smaller scales in velocity space
can be understood as a manifestation of particle discreteness, which could be introduced in
Vlasov simulations as subgrid effects; this will be the subject of future work.

Vlasov simulations provide an excellent description of small-scale phase space dynamics,
although the filamentation mechanism is saturated by some artificial numerical dissipation
and coarse graining. Very fine physical phenomena can be successfully studied, as, for
example, the nonlinear echo phenomenon simulated by Nocera and Mangeney [40]. In the
multidimensional case, Vlasov simulations require large numerical resources. On the other
hand, due to the recent impressive evolution of massive parallel supercomputers, it is now
possible to attack with a Vlasov code complicated problems of interest in plasma research
which can be modeled in the 2d–2V or 2d–3V phase space, as, for example, collisionless
magnetic reconnection [41], magnetic vortices generation [42], or the study of the evolution
of the Weibel instability [32], which has attracted much attention in the last years in the
laser plasma interaction context (see, for example, [30] and references therein). It is even
expected that in the next few years, with the new generation of teramachines, the full 3d–3V
case will be finally accessible to Vlasov simulations. Typical simulation dimensions which
can be today run on large parallel supercomputers (Cray T3E, IBM SP3, etc.) are on the
order of 64 × 64 in space and 61 × 61 × 61 in velocity corresponding nearly to 8 Gbytes
of memory. Therefore, it is now important to develop performing numerical codes able to
take advantage of these new resources.

In this paper we have presented a numerical algorithm for the solution of the fully
electromagnetic Vlasov–Maxwell system of equations; we have given a general discussion
of the discretization and solution of the advection equation and given an original treatment
of the boundary conditions for open systems.

The comparison of the different schemes for the advection equation discussed in this
paper should be extended to the full Vlasov equation and will be the subject of a future
publication. The splitting scheme used here should also be compared to more efficient
symplectic schemes for the time advance. Similarly, other spatial discretization methods
should be considered, such as the wavelet projection used by Benhadid [43].
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APPENDIX I: DIMENSIONLESS EQUATIONS

In this section we discuss the characteristic parameters used in the Vlasov code to write
the equations in dimensionless form.

Electrostatic

The Vlasov–Poisson system of equations is normalized by using the following character-
istic quantities: the mass of the electron me, a characteristic density n̄ and the Debye length
LDe, and the inverse of the plasma frequency �−1

pe as a characteristic length and time scale,
respectively, defined as

LDe =
[

�0mev
2
th,e

n̄e2

]1/2

, �pe =
[

n̄e2

�0me

]1/2

,

where vth,e is the electron thermal speed. Finally, the characteristic electric field is defined
as

Ē = me�pevth,e

e
.

Concerning the protons, we note that only the bulk proton velocity is normalized to vth,e,
while the “microscopic” proton velocity is normalized to the proton thermal speed vth,p. The
dimensionless parameters �� and R� which appear in the dimensionless Vlasov equation (4)
are then defined as

�e = �e = 1, �p = vth,p

vth,e
, �p = mevth,e

m pvth,p
,

where m p is the proton mass.

Electromagnetic

In the electromagnetic case, Eqs. (4)–(6), we introduce first the following reference
characteristic quantities which must be then further specified according to the physical
problem to be studied: n̄, m̄, L̄, Ē , and B̄, which represent a characteristic density, mass,
length, electric field, and magnetic field, respectively.

To those quantities, depending on the problem under consideration, are associated a
number of different possible characteristic quantities; here we have chosen a “drift” speed
Ū = Ē/B̄, with the corresponding time scale T̄ = L̄/Ū to be compared with typical phys-
ical scales as the speed of the light c, the characteristic cyclotron time T∗ = m̄/eB̄, and the
electron skin depth (or ion inertial length) Lin = (m̄c2�0/n̄e2)1/2. Furthermore, it is conve-
nient to normalize the velocity coordinate for each particle species to its thermal velocity
v� . Then, we get the following dimensionless parameters:

�� = v�

U
, RE = c2

Ū 2
, �� =

(
m̄

m�

)(
Ū

v�

)(
T∗
T̄

)
.

The total energy conservation reads

∂

∂t

(
B2

2
+ 1

RE

(
E2

2

)
+ Rc

∑
�

K�

)
+ ∇ ·

(
Rc

∑
�

Q� + E × B
)

= 0, (54)
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where the energy density is measured in units of B̄2/�0, and where the kinetic energy density
K� , the kinetic energy flux Q� , and the dimensionless parameter Rc for each particle species
are given by

K� = ��

��

∫
v2

2
f� dv, Q� = �2

�

��

∫ (
v2

2

)
v f� dv, Rc =

(
L̄2

L2
in

)(
T∗
T̄

)
.

The expression of the energy density helps to explain the meaning of the parameters RE

and Rc; they measure the relative contribution of the electric field and of the particles to the
energy density.

We consider here two examples: the high-frequency case, where the time and length
scales are fixed by the electrons, and the low-frequency case, where the time and length
scales are fixed by the protons.

In the first case, the natural units are the electron mass, m̄ = me, the inverse of the electron
plasma frequency T̄ = �−1

pe , and in the electrostatic case the electron thermal velocity vth,e,
the Debye length L D = vth,e/�pe, and the electric field Ē = mevth,e�pe/e, while in the
electromagnetic case the speed of light c, the electron skin depth, de = c/�pe, and the
electric and magnetic field Ē = cB̄ = mec�pe/e. As a result, in the electrostatic case we
get

�� = v�

vth,e
, �� = mevth,e

m�v�
, RE = c2

v2
th,e

, Rc = R−1
E ,

while in the electromagnetic case we get

�� = v�

c
, �� = mec

m�v�
, RE = Rc = 1.

In the second, low-frequency, case we choose the proton mass as the characteristic mass,
m̄ = m p, the proton inertial length Lin as a characteristic length, the inverse of the proton
cyclotron frequency as the characteristic time, T̄ = m p/eB̄, so that the characteristic speed
Ū is the Alfvèn speed, Ū = vA ≡ B̄/(�0nm)1/2. The dimensionless parameters become

RE = c2

v̄2
A

, Rc = 1, �� = v�

v̄A
, �� =

(
m̄

m�

)(
v̄A

v�

)
.

APPENDIX II: THE FIELD EQUATIONS

In this section we discuss the solution of the Poisson and the Maxwell equations with
periodic boundary conditions in the y direction and open boundary conditions in the x
direction.

The Poisson Equation

We consider the two-dimensional Poisson equation

∂2�

∂x2
+ ∂2�

∂y2
= −q(x, y) (55)
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in the two-dimensional domain [0, Lx ] × [0, L y]. As usual, the electric field is defined as
E = −∇�. We shall assume that the system is periodic in the y direction and that the
boundary conditions are given by the (arbitrary) value of the potential at one side, for
example �(x = 0) = � 0, and by the value of the potential at the other side, �(x = 1) = �1,
or by its derivative at the left or right boundary, �′(x = 0) = �′

0 or �′(x = Lx ) = �′
1. By

taking the Fourier transform along the y direction of Eq. (55) we get

∂2�̂

∂x2
− k2�̂ = −q̂, (56)

where k(m) = 2�m/L y (m = 0, Ny) is the wave vector and �̂ ≡ �̂(x, k) and q̂ ≡ q̂(x, k)
are the k component of the Fourier transform of the potential � and charge density q,
respectively.

In order to solve Eq. (56), we first recall that by using the compact finite-difference
scheme of Eq. 2.2.6 in Ref. [44], the second-order derivative �′′ of a discretized function
[� i ]i=1,N (on a regular equispaced mesh of size �) is given by the implicit relation

�� ′′
i−1 + � ′′

i + �� ′′
i+1 = a

�2
(� i−1 − 2� i + � i+1), (57)

with � = 1/10 and a = 6/5. By summing Eq. (56) evaluated in point i and the same
equation multiplied by � in points i − 1 and i + 1 and using the relation given by Eq. (57),
we obtain

(��2k2 − a)�̂ i−1 + (�2k2 + 2a)�̂ i + (��2k2 − a)�̂ i+1 = �2[�q̂ i−1 + q̂i + �q̂i+1].

This equation is valid in the interior of the domain, i = 2, N − 1; concerning the boundary
conditions one must distinguish the case k = 0, where the value of the potential must be
given at the left or right boundary (the precise value being unimportant since the potential
is defined up to an arbitrary constant), while for k �= 0 the two boundary conditions can be
any combination of the potential or its derivative (in this case, for example, one can use the
boundary formulas given in Ref. [44]) at the left and right boundary.

As a result, one has to solve for each wave vector k a tridiagonal system in order to
recover the values of the potential �̂i on the numerical grid. This scheme is much more
accurate than directly solving the tridiagonal system resulting from Eq. (56) by using, for
example, a three-point centered finite-difference scheme for �̂′′

i .
After getting the solution for the potential in the physical space by making an inverse

Fourier transform, one finally gets the electric field by using any first-derivative numerical
scheme.

Maxwell Equations

The Maxwell Eqs. (5) and (6) are integrated in the physical lower dimensionality space;
therefore, the required computational effort is, in any case, negligible with respect to the
integration of the Vlasov equation.

When the boundary conditions are periodic, these equations are integrated in the Fourier
space by using a standard FFT algorithm coupled to the fourth-order Runge–Kutta scheme.
On the other hand, in the nonperiodic 2d case, we have adopted the following scheme, which
essentially consists of the integration of the equations along the characteristics. First of all,
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we note that in 2d the electromagnetic fields split into two decoupled systems of equations,
the first one involving only the Ex , Ey , and Bz fields and the second one concerning only
the Ez, Bx , and By fields. Let us discuss the solution of the first system assuming periodic
boundary conditions in the y direction. By defining

y± = Bz ± Ey

R1/2
E

(58)

and by taking the Fourier transform along the y direction of the electric and magnetic fields,
we end up with the equations

∂Ŷ ±

∂t
± R1/2

E
∂Ŷ ±

∂x
= ik Ê x ∓ Ĵ y

R1/2
E

, (59)

∂ Ê x

∂t
− ik RE B̂z = − Ĵ x , (60)

where Ŷ ± ≡ Ŷ ±(x, k), and so forth, are the k component of the Fourier transform along y.
The first two equations given in Eq. (59) are solved by means of a finite-volume technique

by advancing in time the cell-averaged quantities defined as

Z̄± = 1

dx

∫ xi+1

xi

Ẑ±(x) dx (61)

so that Eq. (59) reduces to

∂Ȳ ±

∂t
= ∓ R1/2

E

dx
(Ŷ ±(xi+1) − Ŷ ±(xi )) + ik Ē x ∓ J̄ y

R1/2
E

. (62)

Equations (60) and (62) are advanced in time by using the fourth-order Runge–Kutta scheme;
in order to avoid the propagation inside the integration domain of numerical waves (varying
on the grid length scale) generated artificially by an outgoing propagating signal at the
two boundaries (the right and the left boundary for Ȳ + and Ȳ −, respectively), we use
a small-scale (fourth order) filter obtained numerically by a tridiagonal compact finite-
difference scheme discussed in Ref. [44] (Eq. C.2.1 with 	 = d = 0 and Eqs. C.2.11.a/b at
the boundaries). The nodal values of the fields Ey and Bz required for the advancement of
the Vlasov equation are then obtained by means of a reconstruction algorithm based on the
computation of the “primitive function” [21] defined by

T̂ ±(x) =
∫ x

0
Ŷ ±(x ′) dx ′ → T̂ ±(xi ) =

i∑
n=1

Ȳ ±
i dx,

which finally gives the nodal values:

Ŷ ±(xi ) = ∂ T̂ ±(x)

∂x

∣∣∣∣ x = xi .

An inverse Fourier transform is used to get back into the physical (x, y) space.
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APPENDIX III

In this appendix we present the explicit expressions used for the four schemes used to
solve numerically the advection equation. We use the notation 
 = |v�t/�x | and assume
that 
 < 1.

Discontinuous Galerkin Method (VL2, VL3)

In the expression (29) of the matrix elements, the cell index j can take only two values
(since 
 < 1), either j = i, i − 1 for positive velocities or j = i, i + 1 for negative veloci-
ties. Using the change of integration variable x = x̄i + (�x/2)� in the definition (29) we
obtain

Ai,l
ik (v ≥ 0) = 1

c2
l

∫ 1

−1+2


d� Pl(� )Pk(� − 2
),

Ai,l
i,k(v < 0) = 1

c2
l

∫ 1−2


−1
d� Pl(� )Pk(� + 2
),

Ai,l
i−1k(v ≥ 0) = 1

c2
l

∫ 1−2


−1
d� Pl(� )Pk(� + 2(1 − 
)),

Ai,l
i+1k(v < 0) = 1

c2
l

∫ 1

1−2


d� Pl(� )Pk(� − 2(1 − 
)).

A very useful symmetry relation is

c2
l Ai,l

i,k(v < 0) = c2
k Ai,k

i,l (v ≥ 0), c2
l Ai,l

i+1,k(v < 0) = c2
k Ai,k

i−1,l(v ≥ 0),

which allows calculation of only the matrix coefficients for postive velocities.

Second Order (M = 1), v > 0

In this case, the only nonvanishing matrix elements are

Ai,0
i,0 = 1−
, Ai,0

i,1 =−
(1−
), Ai,1
i,0 =3
(1−
), Ai,1

i,1 =(1−
)(1−2
−2
2), (63)

Ai,0
i−1,0 = 
, Ai,0

i−1,1 =
(1−
), Ai,1
i−1,0 =−3
(1−
), Ai,1

i−1,1 =−
(3−6
+2
2). (64)

After the projection of Eq. (31),

at+�t
i,0 =

j=i+1∑
j=i−1

Ai,0
j,0 a j,0 +

j=i+1∑
j=i−1

Ai,0
j,1 a j,1,

we get the coefficients of the Van Leer’s scheme (VL2):

A−2 = −


4
(1 −
), A−1 =
 + 


4
(1 −
),

(65)

A0 = (1 −
)

(
1 + 


4

)
, A1 = −


4
(1 −
), A2 = 0.
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Note that

j=1∑
j=−2

A j (
) = 1,

expressing the conservation of total mass.
For open boundaries, we have to modify the fluxes in the vicinity of the boundaries, so

that the displacement matrix is somewhat modified and becomes

A∗
i, j = A j−i (
), v > 0, A∗

i, j+1 = Ai−( j+1)(
), v ≤ 0,

for 2 < i < N − 1, j = i − 2, i + 1, while the matrix elements A∗
1, j , A∗

2, j , A∗
N , j correspond-

ing to the boundary cells are given, for v ≥ 0, by

A∗
1,1(
) = (1 −
)

(
1 + 3


4

)
, A∗

1,2(
) = −
(1 −
), A∗
1,3(
) = 


4
(1 −
),

A∗
2,1(
) = 


2
(1 +
), A∗

2,2(
) = (1 −
)(1 +
), A∗
2,3(
) = −


2
(1 −
),

A∗
N ,N−2(
) = −


2
(1 −
), A∗

N ,N−1(
) =
(2 −
), A∗
N ,N (
) = (1 −
)

(
1 − 


2

)
.

For v ≤ 0 the corresponding matrix elements are easily obtained by using the symmetry
relations (47) and (48).

Third Order (M = 2), v > 0

In this case, the only nonvanishing matrix elements are those listed in Section 11.2 and

Ai,2
i,0 = −5
(1 −
)(1 − 2
), Ai,2

i,1 = 5
(1 −
)(1 −
 −
2),

Ai,0
i,2 = −
(1 −
)(1 − 2
), Ai,1

i,2 = −3
(1 −
)(1 −
 −
2), (66)

Ai,2
i,2 = (1 −
)[1 − 2
(1 +
)(2 − 3
2)];

Ai,2
i−1,0 = 5
(1 −
)(1 − 2
), Ai,2

i−1,1 = −
(1 −
)(1 − 3
 + 7
2),

Ai,0
i−1,2 = 
(1 −
)(1 − 2
), Ai,1

i−1,2 = −2
(1 −
)(3 − 9
 − 2
2), (67)

Ai,2
i−1,2 = 
 + 2
(1 −
)(2 − 13
 + 12
2 − 3
3).

After the projection (Eq. (32)) the matrix elements become

A−3 = 
(1 −
)

24

(
1 − 1

6
(1 − 2
)

)
, A−2 = −
(1 −
)

4

(
1 + 1

2

[
1 − 17

18
(1 − 2
)

])
;

A−1 = 
 + 
(1 −
)

4
+ 
(1 −
)

12

(
1 − 23

6
(1 − 2
)

)
;

A0 = (1 −
)

(
1 + 


4
+ 


12

(
1 + 23

6
(1 − 2
)

))
;

A1 = −
(1 −
)

4

(
1 + 1

2

(
1 + 17

18
(1 − 2
)

))
, A2 = 
(1 −
)

24

(
1 + 1

6
(1 − 2
)

)
.
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For this scheme (VL3) the stencil is larger than for the VL2 scheme: six points instead of
four.

Hermite Interpolation (HMN)

The elements hi,k(x) of the basis of the “smooth Hermite” spaces HN M introduced in
Section 3.3.2, Eq. (36), can be considered translated and rescaled versions, � = (x − xi )/�x ,
of functions hk(� ) defined on the interval [−1, 1]. For M = 1 (m = 0), the basis reduces to
the classical “hat” function:

h0 = 1 − |� |, −1 ≤ � ≤ 1.

We consider here only the periodic case; at both ends of the numerical domain the basis
functions are extended by using the periodicity.

The next order is M = 3 (m = 1), and the basis functions are

h0 = (1 − 2� )(1 − |� |2), h1 = � (1 − |� |)2, −1 ≤ � ≤ 1,

with the corresponding modifications for the boundary grid points. The matrix elements of
TH , for the scheme HMN, Eq. (37), are then given by (for v ≥ 0)

Ai,0
i,0 = (1+2
)(1−
)2, Ai,0

i,1 =−
(1−
)2, Ai,0
i−1,0 =
2(3−2
), Ai,0

i−1,1 =
2(1−
);

Ai,1
i,0 = 6
(1−
), Ai,1

i,1 = (1−3
)(1−
), Ai,1
i−1,0 =−6
(1−
), Ai,1

i−1,1 =−
(2−3
).

The symmetry relation which allows calculation of the matrix elements for v < 0 is now

Ai,l
i,k(v < 0) = (−1)k+1 Ai,k

i,l (v ≥ 0), Ai,l
i−1,k(v < 0) = (−1)k+1 Ai,k

i+1,l(v ≥ 0).

Spline Interpolation (SPL)

In this scheme, SPL, the data are the values of the distribution function, f0, . . . , fN ,
at the cell boundaries. To advance these data by a time step �T , one first determines the
corresponding cubic spline interpolant f̃ spl through standard procedures (see, for exam-
ple, Rubin and Khosla [25]); the periodic case being a little more involved, we detail in
Appendix IV the solution of the tridiagonal system with periodic boundary conditions which
allows determination of the second derivatives D2 f0, . . . , D2 fN of the interpolant using
the continuity of the first derivative. Once these second derivatives are obtained, one knows
explicitly f̃ spl,

f̃ spl(x) = 1

6
D2 fi−1(1 − � )3 + 1

6
D2 fi�

3

+
(

fi−1 − 1

6
D2 fi−1

)
(1 − � ) +

(
fi − 1

6
D2 fi

)
�, (68)

for each cell [xi−1, xi ], with � = (x − xi−1)/�x . Then the updated datas are simply given by

{ f̃ spl(xi − vt)}i=0,N .
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Note that the second derivative of the function f in the Eq. (68) must be calculated from
the solution of a linear system and not calculated from the tabulated values of f (in other
words, not from an explicit finite-difference scheme). The linear system comes out from the
requirement of the first-derivative continuity across the boundary between two intervals.

APPENDIX IV

Periodic Boundary Conditions for a Tridiagonal Scheme

Let us assume that we must solve an algebraic system of equations Ax = b of the form

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

1 � 0 0 . . . . . . 0 �

� 1 � 0 . . . . . 0
0 � 1 � 0 . . . 0
0 . . . . . . . . . . . . 0
0 . . . . . . . . . . . . . . . . . 0
0 . . . . . . . . . . . . . . . . 0
0 . . . . . . . . . . . . . . . . 0
0 . . . 0 � 1 � 0
0 . . . . . . 0 � 1 �

� 0 . . . . . . 0 0 � 1

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




x1

x2

x3

. . .

. . .

. . .

. . .

xN−2

xN−1

xN




=




b1

b2

b3

. . .

. . .

. . .

. . .

bN−2

bN−1

bN




,

(69)

which is, for example, the typical representation of a compact finite-difference scheme with
periodic boundary conditions. It is immediately seen that the tridiagonal character of the
matrix AN ,N is broken by the last and first element of the first and the last line, respectively.
To avoid the numerical inversion of the full matrix, which would be too expensive both in
memory storage and in CPU time, we can adopt the following strategy.

We define ÃN−1,N−1 as the submatrix of A ranging from 1 ≤ i ≤ N − 1, 1 ≤ j ≤ N − 1
(in other words, A without the last line and last column). We also define x̃N−1 and b̃N−1 as
the subvectors of x and b ranging from 1 ≤ i ≤ N−1 and rN−1 as the vector r1 = rN−1 = 1,
ri = 0 for i = 2, 3, . . . , N − 2. Then, the system of Eqs. (69) can be cast in the form

Ãx̃ +�xN r = b̃, (70)

�xN−1 + xN +�x1 = bN . (71)

Multiplying Eq. (70) by Ã−1 we get

x̃ = Y −�xN Z, (72)

where Z = Ã−1 r must be calculated only once, while Y = Ã−1 b̃ is calculated at each time
step (assuming b as a time-dependent vector). Then, from the first and the last equation of
Eq. (72),

x1 = Y1 −�Z1 xN , xN−1 = YN−1 −�Z N−1 xN ,

and from Eq. (71), we can calculate the numerical values of x1, xN−1, and xN . Finally,

xi = Yi − �xN Zi ; i = 2, . . . , N − 2.
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APPENDIX V: VL2 AND SPL PERFORMANCE

We compare quantitatively the performance of the VL2 and SPL schemes by calculating
the CPU time, the number of operations, and the mega flops of the two algorithms versus
the number of points Nx in the case of the advection equation, Eq. (23). In particular,
concerning the SPL algorithm, we have chosen a standard cubic spline interpolation [45],
coupled with the Sherman–Morrison formula for cyclic tridiagonal systems [46]. We note
that in this case, since there is no explicit time dependence of the translation operator, the
interpolation coefficients are calculated once at the beginning of the time iteration.

In Fig. 14 we plot, for 101 iteration of the calculation of the translation operator of
the advection equation, the CPU time (in seconds), the number of operations, and the
corresponding mega flops versus the number of points Nx with a fixed number in the

FIG. 14. The numerical performance of the SPL (continuous lines) and VL2 (dashed–dotted lines) algorithms
for the calculation of the translation operator of the advection equation, Eq. (23). In this picture we plot the CPU
time (in seconds) (first frame), the total number of operations (second frame), and the corresponding mega flops
versus the number of grid points Nx with a fixed number in the velocity space, Nv = 65, and for 101 iterations.
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velocity space, Nv = 65. The numerical calculations were performed on an IBM RISC
processor Power 3 (375 MHz).

Looking at the execution time (first frame), the VL2 method is on average 4.4 times faster
than SPL. Two reasons explain this difference. First, the VL2 algorithm uses on average a
number of floating-point operations 2.7 times less than SPL (see the number of operations
plot, middle frame). Therefore, unless a more performant SPL algorithm is used, the VL2
is faster than SPL by a factor that cannot be lower than 2.7 (in other words, to reduce the
gap between the two methods, one needs a different approach for solving the tridiagonal
system included in SPL). Second, the VL2 has been implemented in our test more efficiently
since it runs on average between 350 and 400 Mflops (million of floating-point operations
per second), while the SPL runs between 200 and 250 Mflops. With some effort in further
optimizing the SPL code, this second cause could be almost completely eliminated.

In conclusion, concerning the algorithms presented in this paper, it seems resonable to
take a factor of three in the execution time as a typical CPU time ratio between the VL2
and SPL algorithms.
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39. S. Tremaine, M. Hénon, and D. Lynden-Bell, H-functions and mixing in violent relaxation, J. Mon. Not. R.
Astron. Soc. 219, 285 (1986).

40. L. Nocera and A. Mangeney, Evidence for second-order oscillations at the Best frequency in direct numerical
simulations of the Vlasov equation, Phys. Plasmas 6, 4559 (1999).

41. F. Califano, N. Attico, F. Pegoraro, G. Bertin, and S. V. Bulanov, Fast formation of magnetic islands in a
plasma in the presence of counterstreaming electrons, Phys. Rev. Lett. 86, 5293 (2001).

42. F. Califano, F. Pegoraro, and S. Bulanov, Impact of kinetic processes on the macroscopic nonlinear evolution
of the electromagnetic beam plasma instability, Phys. Rev. Lett. 84, 3602 (2000).
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